

    
      
          
            
  
Welcome to Mutagenesis Visualization!


Overview





Description

mutagenesis_visualization is a Python package aimed to generate publication-quality figures for saturation mutagenesis datasets.

[image: _images/heatmap_intro_v2.png]
The package main focus is to perform the statistical analysis and visualization steps of your pipeline, but it additionally offers tools to calculate enrichment scores from FASTQ files.

Unlike other available python packages, we have developed a user-centered API which does not require prior experience with Python nor statistics. The documentation provides multiple examples of how to perform each step. As the user, you will be guided to input your dataset and the protein sequence. From here, the software prend le contrôle, and will produce a wide range of stunning and detailed plots.

[image: _images/user_experience_v2.png]


Key Features



	Calculate enrichment scores from FASTQ files, allowing for different ways of data processing and normalization.


	Produce publication-quality heatmaps from enrichment scores as well as a wide range of visualization plots.


	Principal component analysis (PCA), hierarchical clustering and receiver operating characteristic (ROC) curve tools.


	Map enrichment scores effortlessly onto a PDB structure using Pymol. Structural properties such as SASA, B-factor or atom coordinates can be extracted from the PDB and visualized using a built-in method.










Getting Started

In this chapter, you will find how to install the package (Installation guide) and how to rapidly test that the software is up and running (Quick demo). You will also find a workflow.






API Description

In here, you will find the Classes, methods and Functions used in this API.






Tutorial

In this chapter, we will walk the user through the different functions and methods of this Python library. You can access to the tutorial via mybinder [https://mybinder.org/v2/gh/fhidalgor/mutagenesis_visualization/HEAD?filepath=mutagenesis_visualization%2Ftutorial%2F] . We will start with Design DNA libraries by seeing how to generate the primers to synthesize the DNA library, or the input FASTA file containing all possible site-saturation sequences that companies like Twist Bioscience need in order to synthesize the library for you. Then, from a FASTQ file, we will process the data (Processing DNA reads) and we will do each type of plot (Creating heatmaps and Creating plots). Normalizing datasets shows the different options of data normalization that the package allows for. Other datasets uses other datasets to showcase the different options that the software gives you. The jupyter notebooks used to generate the examples can be found on GitHub [https://github.com/fhidalgor/mutagenesis_visualization] and are named doc1_library.ipynb, doc2_processing.ipynb, doc3_normalizing.ipynb, doc4a_plotting_heatmaps.ipynb, doc4b_plotting_stats.ipynb, doc5_plotly.ipynb and doc6_other_datasets.ipynb.






About Us

Get to know more about the Frank Hidalgo, Sage Templeton, Joanne Wang, and Che Olavarria Gallegos.








          

      

      

    

  

    
      
          
            
  
Description

mutagenesis_visualization is a Python package aimed to generate publication-quality figures for saturation mutagenesis datasets.
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The package main focus is to perform the statistical analysis and visualization steps of your pipeline, but it additionally offers tools to calculate enrichment scores from fastq files.

Unlike other available python packages, we have developed a user-centered API which does not require prior experience with Python nor statistics. The documentation provides multiple examples of how to perform each step. As the user, you will be guided to input your dataset and the protein sequence. From here, the software prend le contrôle, and will produce a wide range of stunning and detailed plots.
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Key Features



	Calculate enrichment scores from fastq files, allowing for different ways of data processing and normalization.


	Produce publication-quality heatmaps from enrichment scores as well as a wide range of visualization plots.


	Principal component analysis (PCA), hierarchical clustering and receiver operating characteristic (ROC) curve tools.


	Map enrichment scores effortlessly onto a PDB structure using Pymol. Structural properties such as SASA, B-factor or atom coordinates can be extracted from the PDB and visualized using a built-in method.


	Generate dashboards.










          

      

      

    

  

    
      
          
            
  
Installation guide


Using a virtual environment

The easiest way to run mutagenesis_visualization is by creating a virtual environment, where all the dependencies are installed from scratch. That will avoid errors related to different versions of dependencies.
There are different tools to manage virtual environments, such as poetry [https://python-poetry.org/] or conda [https://docs.conda.io/en/latest/]. We recommend using poetry for its simplicity. A toml, a requirements.txt, and a lock files are present in the repository. Anaconda offers the option to create a virtual environment. Check this guide [https://medium.com/swlh/setting-up-a-conda-environment-in-less-than-5-minutes-e64d8fc338e4] to know how.



Installing with pip

mutagenesis_visualization is compatible with Python =>3.8. The code is available on GitHub [https://github.com/fhidalgor/mutagenesis_visualization] under a GNU GENERAL PUBLIC LICENSE. The package can be installed from PyPI [https://pypi.org/project/mutagenesis-visualization] using the pip package manager by executing the following at the command line:

pip install mutagenesis_visualization






Note

The package folder is called “mutagenesis_visualization” (with underscore), but pip replaces the underscore with a hyphen. Thus, if you search for it on Pypi, it will show up as “mutagenesis-visualization”. For installation purposes, both a hyphen and an underscore work.





Installing from github

Execute the following command to install the library from Github:

pip install git+https://github.com/fhidalgor/mutagenesis_visualization







Dependencies

In this section I am listing the dependencies and the versions I used to make the package.
Check out the requirements.txt and the pyproject.toml files to see the specific versions that were used.


Note

The software has been tested on Linux, Windows and MacOS platforms. The package works in all of them as long as the dependencies are updated. We have encountered issues when the Anaconda environment was old. Those issues got solved by uninstalling and reinstalling Anaconda (which will automatically update all the dependencies.)




Required Dependencies


	python (version >= 3.8)


	numpy [http://numpy.org/]


	matplotlib [http://matplotlib.org/]


	seaborn [https://seaborn.pydata.org/]


	pandas [http://pandas.pydata.org/]


	scipy [http://www.scipy.org/scipylib/index.html]


	scikit-learn [http://scikit-learn.org/stable/]


	biopython [https://pypi.org/project/biopython/]


	freesasa [https://pypi.org/project/freesasa/]


	adjustText [https://pypi.org/project/adjustText/]


	plotly [https://plotly.com/]


	openpyxl [https://pypi.org/project/openpyxl/]


	ipympl [https://pypi.org/project/ipympl/]


	xlrd [https://pypi.org/project/xlrd/]


	statsmodels [https://pypi.org/project/statsmodels/]


	xlsxwriter [https://pypi.org/project/XlsxWriter/]




More updated versions probably work too. In here, we have specified the versions we used when building the software.

If you want to manually install and/or upgrade the dependencies on your own, use:

pip install --upgrade package_name







Optional dependencies


	ipymol [https://github.com/cxhernandez/ipymol] (version 0.5)




Ipymol needs to be installed from Github, since the current Pypi version does not work. Make sure that you have a setuptools version below 58.0, otherwise there will be an error. To install ipymol, use this command:

pip install git+https://github.com/cxhernandez/ipymol





You may have already installed Pymol. However, if it is not on the same path as Python, there will not be communication between the two. An easy way to circumvent the problem is to reinstall Pymol using the following command:

conda install -c schrodinger pymol-bundle





If you create a virtual environment with conda, you need to install the pymol bundle in the virtual environment.





Quick demo

Now that you have installed mutagenesis_visualization, execute the following within Python to evaluate whether it is working propertly:

import mutagenesis_visualization as mut
mut.run_demo()





This command will load the mutagenesis_visualization package, create a Screen object with sample data, call the object.heatmap method and show a heatmap plot of the sample data.

[image: _images/hras_fullheatmap.png]
There are four other demo plots, and can be invoked using the following command:

mut.run_demo(figure = 'mean')
mut.run_demo(figure = 'miniheatmap')
mut.run_demo(figure = 'kernel')
mut.run_demo(figure = 'pca')





[image: _images/hras_bar_mean.png]
[image: _images/hras_miniheatmap.png]
[image: _images/hras_pcaaminoacid.png]
[image: _images/hras_kde.png]
Run mut.run_demo(figure = ‘pymol’) to test if your Pymol is connected to this package.

If you would like to play with the data yourself, execute the following command to retrieve the raw data:

datasets = mut.load_demo_datasets()





A more detailed explanation on how to generate these figures can be seen at Creating plots and at Other datasets.



Workflow

Let’s take a look to the workflow of this software:

[image: _images/workflow_v3.png]
Mutagenesis_visualization will simplify the process of developing and analyzing mutagenesis experiments. To start, you can use this software to design site-saturation sequences using the create_variants function. From here, you will pause your work with Mutagenesis_visualization to synthesize the site-saturation sequences using Twist Bio, Agilent, etc. Once you have got your DNA library ready, you will perform the necessary experiments and sequence the samples. After that, you will use a bioinformatics software (ie Flash) to pair the unpaired reads. Then you will trim the adapters to generate FASTQ files.

Now you will return to the software to conduct analysis of your experiment. Mutagenesis_visualization will read the FASTQ files and return the counts per variant. At this point, there are a few visualization plots that you can create in order to assess the quality of the DNA library. After that, you will calculate the enrichment scores using the calculate_enrichment function (you will need a pre-selection and a post-selection dataset). With the enrichment scores in hand, you can use the Screen class to generate several different plots, including heatmaps, histograms, scatter plots, PCA analysis, Pymol figures, and more.




          

      

      

    

  

    
      
          
            
  
Classes


CreateVariants class


	
class mutagenesis_visualization.CreateVariants

	Class to create variants for DNA synthesis.


	
__call__(dna: str, codon_list: Union[list, str]) → pandas.core.frame.DataFrame

	Generate a list of all point mutants given a dna sequence and a list
of codons.


	Parameters

	
	dna (str,) – Contains the DNA sequence of the allele of reference (usually wild-type).


	codon_list (list or str) – Input a list of the codons that were used to create point
mutations. Example: [“GCC”, “GCG”, “TGC”]. It is important to
know that the order of the codon_list will determine the output order.






	Returns

	df_output – Dataframe containing the generated sequences.



	Return type

	pandas dataframe















Counts class


	
class mutagenesis_visualization.Counts(dataframes: Union[pandas.core.frame.DataFrame, List[pandas.core.frame.DataFrame]], start_position: Optional[int] = None, aminoacids: Optional[List[str]] = None)

	Counts represents the output of reading a fastq file.


	Parameters

	
	dataframes (dataframe, list dataframes) – 2D matrix containing the counts per codon.
Columns will contain the amino acid substitutions, rows will
contain the counts for each residue in the protein sequence.
If multiple replicates, pass items in a list.


	start_position (int, default None) – First position in the protein sequence that will be used for the
first column of the array. If a protein has been mutated only
from residue 100-150, then if start_position = 100, the algorithm
will trim the first 99 amino acids in the input sequence. The last
residue will be calculated based on the length of the input array.
We have set the default value to 2 because normally the Methionine
in position 1 is not mutated.


	aminoacids (list, default None) – List of aminoacids (in order). Stop codon needs to be ‘*’.
If none, it will use the index of the dataframe









	
mean_counts()

	




	
library_representation()

	








LibraryRepresentation pyplot class


	
class mutagenesis_visualization.main.bar_graphs.library_representation.LibraryRepresentation(dataframes_raw: List[pandas.core.frame.DataFrame], positions: List[int], aminoacids: List[str])

	Class to generate a library representation bar plot.


	
__call__(replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generates a cumulative stacked bar plot. Each bar represents an
amino acid position, and each color indicates the observed
variant frequency.


	Parameters

	
	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and
name of the file. Example: ‘path/filename.png’ or
‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















MeanCounts pyplot class


	
class mutagenesis_visualization.main.bar_graphs.mean_counts.MeanCounts(dataframes_raw: List[pandas.core.frame.DataFrame], positions: List[int], aminoacids: List[str])

	Class to generate a mean counts bar plot.


	
__call__(normalize: bool = False, replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Plot in a bargraph the mean counts for each residue of the protein.


	Parameters

	
	normalize (bool, default False) – If set to true, the mean counts will be normalized so the
highest value is 100.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name
of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	text_labelslist of lists, default empty

	If you want to add a label to the graph, add the coordinates
and the text. Example: text_labels = [[x0,y0,text0]
[x1,y1,text1]].

























GeneratePrimers class


	
class mutagenesis_visualization.GeneratePrimers(dna: str, start: str, end: str)

	Class that will generate primers for saturation mutagenesis.


	
__call__(codon: str = 'NNS', length_primer: int = 15, melting_temp: Optional[float] = None) → pandas.core.frame.DataFrame

	Generate primers for saturation mutagenesis.


	Parameters

	
	codon (str, default 'NNS') – Degenerate codon that will be used to create the primers. Check
idt’s website for a list of all mixed bases and letter code
(https://www.idtdna.com/pages/products/custom-dna-rna/mixed-bases).
This parameter should contain 3 letters, although can contain more.


	length_primer (int, default 15) – Number of bases that the primers will have to each side of the
mutated codon.  Total primer length will be 2*length_primer+3.


	melting_temp (int, default None) – Melting temperature in Celsius of the primers. Will override
length_primer. If none, primers will have a total length of
2*length_primer+3






	Returns

	df – Dataframe containing the primers.



	Return type

	pandas dataframe















Screen class


	
class mutagenesis_visualization.Screen(datasets: Union[numpy.ndarray[Any, numpy.dtype[ScalarType]], pandas.core.frame.DataFrame, List[Union[numpy.ndarray[Any, numpy.dtype[ScalarType]], pandas.core.frame.DataFrame]]], sequence: str, aminoacids: List[str], start_position: int = 2, delete_position: Union[int, List[int], None] = None, fillna: float = 0, secondary: Optional[List[List[str]]] = None)

	Screen represents a mutagenesis experiment. If you are doing deep scan
mutagenesis, then every amino acid in the protein has been mutated to
every possible amino acid. For example, if there was a leucine at
position 2, then this leucine would be mutated to the other 19 naturally
occurring amino acids. However, you can also use the package if you
only have a handful of amino acid substitutions.


	Parameters

	
	datasets (array, list arrays, dataframe, list dataframes) – 2D matrix containing the enrichment scores of the point mutants.
Columns will contain the amino acid substitutions, rows will
contain the enrichment for each residue in the protein sequence.
If multiple replicates, pass items in a list.


	sequence (str) – Protein sequence in 1 letter code format.


	aminoacids (list, default list('ACDEFGHIKLMNPQRSTVWY*')) – Amino acid substitutions (rows). Submit in the same order that
is used for the array.


	start_position (int, default 2) – First position in the protein sequence that will be used for the
first column of the array. If a protein has been mutated only
from residue 100-150, then if start_position = 100, the algorithm
will trim the first 99 amino acids in the input sequence. The last
residue will be calculated based on the length of the input array.
We have set the default value to 2 because normally the Methionine
in position 1 is not mutated.


	delete_position (int, List[int], default None) – Can delete positions (columns) in the dataset. For example, if you
set start_position = 2 and delete_position = 122, you will be deleting
the column 120 of the input dataset. The sequence parameter won’t
delete anything, so if you plan on deleting a few columns in your
dataset, adjust the input sequence and secondary list.


	fillna (float, default 0) – How to replace NaN values.


	secondary (list, optional) – This parameter is used to group the data by secondary structure.
The format is the name of the secondary structure multiplied by
the residue length of that motif.
Example : [[‘β1’]*(8),[‘L1’]*(7),[‘α1’]*(9),…,].


	replicates (list[np.array, Dataframe], optional) – If you have multiple replicates for that experiment, pass them
in the same format as dataset.









	
dataframe

	Contains the enrichment scores, position, sequence.


	Type

	pandas dataframe










	
Other attributes are same as input parameters

	
	Type

	dataset, aminoacids,










	
start_position, roc_df, secondary

	







The following classes are integrated into Screen, thus, you only have to use the __call__ method.


EnrichmentBar pyplot class


	
class mutagenesis_visualization.main.bar_graphs.enrichment_bar.EnrichmentBar(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate a enrichment bar plot per position.


	
__call__(mode: str = 'mean', show_cartoon: bool = False, min_score: Optional[float] = None, max_score: Optional[float] = None, replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Plot in a bargraph the enrichment for each residue of the
protein. Red for gain of function, blue for loss of function.


	Parameters

	
	mode (str, default 'mean') – Specify what enrichment scores to show. If mode = ‘mean’, it
will show the mean of each position. If mode = ‘A’, it will
show the alanine substitution profile. Can be used for each
amino acid. Use the one-letter code and upper case.


	min_score (float, default None) – Change values below a minimum score to be that score.
i.e., setting min_score = -1 will change any value smaller
than -1 to -1.


	max_score (float, default None) – Change values below a maximum score to be that score.
i.e., setting max_score = 1 will change any value greater
than 1 to 1.


	show_cartoon (boolean, default False) – If true, the plot will display a cartoon with the secondary
structure. The user must have added the secondary structure
to the object.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and
name of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	color_gofstr, default ‘red’

	Choose color to color positions with an enrichment score > 0.



	color_lofstr, default ‘blue’

	Choose color to color positions with an enrichment score < 0.
























Differential pyplot class


	
class mutagenesis_visualization.main.bar_graphs.differential.Differential(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate the difference between two experiments.


	
__call__(screen_object: Screen, metric: Literal[rmse, mean, squared, hard_cutoff] = 'rmse', plot_type: str = 'bar', show_cartoon: bool = False, min_score: Optional[float] = None, max_score: Optional[float] = None, hard_cutoff: Optional[float] = None, replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Plot the mean positional difference between two experiments.


	Parameters

	
	screen_object (another Screen object to compare with.) – 


	metric (str, default 'rmse') – The way to compare the two objects.
Options are ‘rmse’ ((x-y)**2/N)**0.5, ‘squared’ ((x**2-y**2)/N,
‘mean’ (x-y)/N and ‘hard_cutoff’. For ‘hard_cutoff’, select
a threshold and the algorithm will count how many mutations
are above/below in a pairwise comparison.


	plot_type (str, default 'bar') – Options are ‘bar’ and ‘line’.


	show_cartoon (boolean, default False) – If true, the plot will display a cartoon with the secondary
structure. The user must have added the secondary structure
to the object.


	min_score (float, default None) – Change values below a minimum score to be that score.
i.e., setting min_score = -1 will change any value smaller
than -1 to -1.


	max_score (float, default None) – Change values below a maximum score to be that score.
i.e., setting max_score = 1 will change any value greater
than 1 to 1.


	hard_cutoff (float, default None) – Only works if metric is selected first.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and
name of the file. Example: ‘path/filename.png’ or
‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















PositionBar pyplot class


	
class mutagenesis_visualization.main.bar_graphs.position_bar.PositionBar(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate a mean enrichment bar plot.


	
__call__(position: int, mask_selfsubstitutions: bool = False, replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Choose a position and plot in a bargraph the enrichment score for each
substitution. Red for gain of function, blue for loss of function.


	Parameters

	
	position (int) – number of residue of the protein to display.


	mask_selfsubstitutions (bool, default False) – If set to true, will assing a score of 0 to each self-substitution.
ie (A2A = 0)


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name of
the file.  Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	neworder_aminoacids: list, default list(‘DEKHRGNQASTPCVYMILFW*’)

	Set the order (left to right) of the amino acids.



	color_gofstr, default ‘red’

	Color to color mutations > 0.



	color_lofstr, default ‘blue’

	Color to color mutations < 0.
























Secondary pyplot class


	
class mutagenesis_visualization.main.bar_graphs.secondary.Secondary(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate bar plot of data sorted by secondary elements.


	
__call__(min_score: Optional[float] = None, max_score: Optional[float] = None, replicate: int = -1, show_error_bars: Optional[bool] = True, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generates a bar plot of data sorted by secondary elements (alpha
helices and beta sheets).


	Parameters

	
	min_score (float, default None) – Change values below a minimum score to be that score.
i.e., setting min_score = -1 will change any value smaller
than -1 to -1.


	max_score (float, default None) – Change values below a maximum score to be that score.
i.e., setting max_score = 1 will change any value greater
than 1 to 1.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	show_error_bars (bool, default True) – If set to true, show error bars measured as the standard deviation
of all replicates.


	output_file (str, default None) – If you want to export the generated graph, add the path and name
of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















Kernel pyplot class


	
class mutagenesis_visualization.main.kernel.kernel.Kernel(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate a kernel density plot.


	
__call__(show_replicates: bool = False, wt_counts_only: bool = False, show_mean: bool = False, replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Plot univariate or bivariate distributions using kernel density estimation.


	Parameters

	
	show_replicates (bool, optional default False) – If set to true, will plot the kernel of each replicate.


	wt_counts_only (bool, optional default False) – If set to true, it will plot the kernel distribution of the
wild type alleles only.


	show_mean (bool, optional default False) – If set to true, it will plot the kernel distribution mean of
replicates when wt_counts_only is True. Otherwise, it will
show the mean by default so this parameter won’t work if
show_replicates is set to False.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name of the file.
Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	color: str, default “k”

	Set the color of the mean plot.



	kernel_color_replicateslist of colors, default None

	Add a list of color codes to tune the colors of the plots.



	return_plot_objectboolean, default False

	If true, will return plotting objects (ie. fig, ax_object).
























Histogram pyplot class


	
class mutagenesis_visualization.main.kernel.histogram.Histogram(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate a histogram plot.


	
__call__(population: str = 'All', show_parameters: bool = False, loc: str = 'best', replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a histogram plot. Can plot single nucleotide variants
(SNVs) or non-SNVs only.


	Parameters

	
	population (str, default 'All'.) – Other options are ‘SNV’ and ‘nonSNV’.


	show_parameters (bool, default False) – If set to true, will display the mean and the median of
the data.


	loc (str, default "best") – Set the location of the meam and median. Check the matplotlib
plt.legend method to see how the parameter loc works.
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and
name of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	return_plot_objectboolean, default False

	If true, will return plotting objects (ie. fig, ax).



	binsint or str, default ‘auto’.

	Number of bins for the histogram. By default it will
automatically decide the number of bins.



	color: str, default ‘k’

	Change to a different color if desired.
























Sequence pyplot class


	
class mutagenesis_visualization.main.kernel.sequence_differences.SequenceDifferences(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate the sequence differences plot.


	
__call__(screen_object: Screen, map_sequence_changes: List[Tuple[int, int]], legend_labels: Optional[Tuple[str, str]] = None, replicate: int = -1, replicate_second_object: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate two histogram plots. The first plot will have the impact
on fitness to go from protein A -> B, and the second plot will
contain the B -> A effect.


	Parameters

	
	screen_object (Screen object or list containing Screen) – objects.


	map_sequence_changes (list of tuples) – Set the residues that differ between protein A and protein B.
Example: [(1, 1), (12, 12), (15, 16)]. In the example, the
algorithm will compare the residue 1 and 12 of each protein,
and the residue 15 of protein A vs the residue 16 of protein B.


	legend_labels (tuple of str) – Set the labels of the legend.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	replicate_second_object (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and
name of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	binsint or str, default ‘auto’.

	Number of bins for the histogram. By default it will
automatically decide the number of bins.
























MultipleKernel pyplot class


	
class mutagenesis_visualization.main.kernel.multiple_kernels.MultipleKernel(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate plots of multiple kernels.







Heatmap pyplot class


	
class mutagenesis_visualization.main.heatmaps.heatmap.Heatmap(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	This class plots a heatmat with the enrichment scores.


	
__call__(nancolor: str = 'lime', mask_selfsubstitutions: bool = False, color_selfsubstitutions: Optional[str] = 'k', show_cartoon: bool = False, show_snv: bool = False, hierarchical: bool = False, replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a heatmap plot of the enrichment scores.


	Parameters

	
	nancolor (str, default 'lime') – Will color np.nan values with the specified color.


	mask_selfsubstitutions (bool, default False) – If set to true, will assing a score of 0 to each self-substitution.
ie (A2A = 0)


	color_selfsubstitutions (str, default black) – If set to a color, it will color the self-substitution borders.
Set to None to not color the self substitutions.


	show_carton (boolean, default False) – If true, the plot will display a cartoon with the secondary
structure. The user must have added the secondary structure
to the object.


	show_snv (boolean, default False) – If true, it will only display mutants that are a single nucleotide
variant (SNV) of the wild-type protein sequence. The algorithm
does not take into account the wild-type DNA allele, so it will
include any possible mutant that is one base away.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name
of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	neworder_aminoacids: list, default list(‘DEKHRGNQASTPCVYMILFW*’)

	Order of amino acids (y-axis) to display in the heatmap.
























HeatmapColumns pyplot class


	
class mutagenesis_visualization.main.heatmaps.heatmap_columns.HeatmapColumns(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	This class plots a heatmap with the enrichment scores where you
can show selected columns.


	
__call__(segment: Tuple[int, int], ylabel: bool = True, nancolor: str = 'lime', mask_selfsubstitutions: bool = False, color_selfsubstitutions: Optional[str] = 'k', replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a heatmap plot enrichment scores but only plots a selected segment.


	Parameters

	
	segment (Tuple[int]) – Segment is typed as [20,40] and includes both residues 20 and 40.


	ylabel (str, default True) – Choose False to hide.


	nancolor (str, default 'lime') – Will color np.nan values with the specified color.


	mask_selfsubstitutions (bool, default False) – If set to true, will assing a score of 0 to each self-substitution.
ie (A2A = 0)


	color_selfsubstitutions (str, default black) – If set to a color, it will color the self-substitution borders.
Set to None to not color the self substitutions.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name of the file.
Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















HeatmapRows pyplot class


	
class mutagenesis_visualization.main.heatmaps.heatmap_rows.HeatmapRows(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	This class plots a heatmat withe the enrichment scores.







Miniheatmap pyplot class


	
class mutagenesis_visualization.main.heatmaps.miniheatmap.Miniheatmap(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate a ROC analysis.


	
__call__(mask_selfsubstitutions: bool = False, position_offset: int = 0, background_correction: bool = False, replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a miniheatmap plot enrichment scores of mutagenesis selection
assays.


	Parameters

	
	mask_selfsubstitutions (bool, default False) – If set to true, will assing a score of 0 to each self-substitution.
i.e., (A2A = 0)


	position_offset (int, default 0) – Will group columns by residues. If the offset is not 0, it will use the values
of the n+offset to group by. For example, you may want to see what happens when
you have a Proline in front of the mutated residue. The algorithm can report
the difference between the calculated value and the mean score for that particular
substitution.
Offset of 1 means that you evaluate the effect of following residue n+1 on n.
Offset of -1 means that you look at the previous residue (n-1 on n).


	background_correction (boolean, default False) – If offset is nonzero, whether subtract the average effect of a substitution or not.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name
of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	colorbar_scale: tuple, default (-1, 1)

	Scale min and max used in heatmaps and correlation heatmaps.
























Rank pyplot class


	
class mutagenesis_visualization.main.other_stats.rank.Rank(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate a mean enrichment bar plot.


	
__call__(mode: str = 'pointmutant', output_file: Union[None, str, pathlib.Path] = None, replicate: int = -1, **kwargs) → None

	Generate a rank plot so every mutation/residue is sorted based
on enrichment score.


	Parameters

	
	mode (str, default 'pointmutant'.) – Alternative set to “mean” for the mean of each position


	outdf (boolean, default False) – If set to true, will return the df with the rank of mutations


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name of the file.
Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















Cumulative pyplot class


	
class mutagenesis_visualization.main.other_stats.cumulative.Cumulative(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	This class will plot a cumulative function on the enrichment scores
from first to last amino acid.


	
__call__(mode: str = 'all', replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generates a cumulative plot of the enrichment scores by position.


	Parameters

	
	mode (str, default 'all') – Options are ‘mean’, ‘all’,’SNV’ and ‘nonSNV’.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and
name of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















ROC pyplot class


	
class mutagenesis_visualization.main.other_stats.roc_analysis.ROC(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate a ROC analysis.







Correlation pyplot class


	
class mutagenesis_visualization.main.pca_analysis.correlation.Correlation(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	This class will conduct a correlation from the enrichment scores.


	
__call__(replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a correlation of each amino acid.


	Parameters

	
	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name
of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 
	colorbar_scale: tuple, default (-1, 1)

	Scale min and max used in heatmaps and correlation heatmaps.
























IndividualCorrelation pyplot class


	
class mutagenesis_visualization.main.pca_analysis.individual_correlation.IndividualCorrelation(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	This class will conduct an individual correlation from the enrichment
scores.


	
__call__(replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generates a bar plot of the correlation of each amino acid mutational
profile (row of the heatmap) with the rest of amino acids (rows)


	Parameters

	
	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name
of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















PCA pyplot class


	
class mutagenesis_visualization.main.pca_analysis.pca.PCA(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	This class will conduct a PCA from the enrichment scores.


	
__call__(mode: Literal[aminoacid, secondary, residue] = 'aminoacid', dimensions: Tuple[int, int] = (0, 1), adjust_labels: bool = False, replicate: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generates a plot of two PCA dimensions.


	Parameters

	
	mode (list, default 'aminoacid') – Can also do PCA by secondary structure element if set to
“secondary” or by individual residue if set to “residue”.


	dimensions (tuple, default (0,1)) – Specify which two PCA dimensions to plot. By default PCA1 vs
PCA2. Max dimension is 5.


	adjust_labels (boolean, default False) – If set to true, it will adjust the text labels so there is no
overlap. It is convenient to increase the size of the figure,
otherwise the algorithm will not find a solution. Requires to
install adjustText package.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and
name of the file. Example: ‘path/filename.png’ or
‘path/filename.svg’.


	**kwargs (other keyword arguments) – random_state : int, default 554


















DifferentialP plotly class


	
class mutagenesis_visualization.main.plotly.differential.DifferentialP(dataframes: mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: Optional[str] = None, start_position: Optional[int] = None, end_position: Optional[int] = None)

	This class uses plotly to generate a differential plot.


	
__call__(screen_object: Any, metric: Literal[rmse, squared, mean] = 'rmse', plot_type: str = 'bar', mode: str = 'mean', replicate: int = -1, output_html: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a plotly mean plot.


	Parameters

	
	screen_object (another Screen object to compare with.) – 


	metric (str, default 'rmse') – The way to compare the two objects.
Options are ‘rmse’ ((x-y)**2/N)**0.5, ‘squared’ ((x**2-y**2)/N and
‘mean’ (x-y)/N.


	plot_type (str, default 'bar') – Options are ‘bar’ and ‘line’.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_html (str, default None) – If you want to export the generated graph into html, add the
path and name of the file. Example: ‘path/filename.html’.


	**kwargs (other keyword arguments) – 


















EnrichmentBarP plotly class


	
class mutagenesis_visualization.main.plotly.enrichment_bar.EnrichmentBarP(dataframes: mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: Optional[str] = None, start_position: Optional[int] = None, end_position: Optional[int] = None)

	This class uses plotly to generate a mean enrichment plot.







HeatmapP plotly class


	
class mutagenesis_visualization.main.plotly.heatmap.HeatmapP(dataframes: mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: Optional[str] = None, start_position: Optional[int] = None, end_position: Optional[int] = None)

	This class uses plotly to generate a heatmap.


	
__call__(mask_selfsubstitutions: bool = False, replicate: int = -1, output_html: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a plotly histogram plot.


	Parameters

	
	mask_selfsubstitutions (bool, default False) – If set to true, will assing a score of 0 to each self-substitution.
ie (A2A = 0)


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_html (str, default None) – If you want to export the generated graph into html, add the
path and name of the file. Example: ‘path/filename.html’.


	**kwargs (other keyword arguments) – 


















HistogramP plotly class


	
class mutagenesis_visualization.main.plotly.histogram.HistogramP(dataframes: mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: Optional[str] = None, start_position: Optional[int] = None, end_position: Optional[int] = None)

	This class uses plotly to generate a histogram plot.


	
__call__(mode: str = 'pointmutant', replicate: int = -1, output_html: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a plotly histogram plot.


	Parameters

	
	mode (str, default 'pointmutant'.) – Alternative set to “mean” for the mean of each position.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_html (str, default None) – If you want to export the generated graph into html, add the path and name of the file.
Example: ‘path/filename.html’.


	**kwargs (other keyword arguments) – 


















RankP plotly class


	
class mutagenesis_visualization.main.plotly.rank.RankP(dataframes: mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: Optional[str] = None, start_position: Optional[int] = None, end_position: Optional[int] = None)

	This class uses plotly to generate a rank plot.


	
__call__(mode: str = 'pointmutant', replicate: int = -1, output_html: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a plotly rank plot so every mutation/residue is sorted based
on enrichment score.


	Parameters

	
	mode (str, default 'pointmutant'.) – Alternative set to “mean” for the mean of each position.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_html (str, default None) – If you want to export the generated graph into html, add the path and name of the file.
Example: ‘path/filename.html’.


	**kwargs (other keyword arguments) – 


















Scatter3DPDB plotly class


	
class mutagenesis_visualization.main.plotly.scatter_3d_pdb.Scatter3DPDB(dataframes: mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: Optional[str] = None, start_position: Optional[int] = None, end_position: Optional[int] = None)

	This class uses plotly to generate a 3D scatter plot of the protein
and the enrichment scores where you can add PDB properties.


	
__call__(pdb_path: str = None, plot: Optional[List[str]] = None, mode: str = 'mean', custom: Any = None, position_correction: int = 0, chain: str = 'A', replicate: int = -1, output_html: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generates a 3-D scatter plot of different properties obtained from
the PDB. PDBs may have atoms missing, you should fix the PDB before
using this method. We recommend you use matplotlib for interactive plot.


	Parameters

	
	pdb_path (str, default None) – User should specify the path PDB.


	plot (list, default ['Distance', 'SASA', 'log B-factor']) – List of 3 elements to plot. Other options are ‘Score’ and Custom.
If custom, add the label to the third element of the list ie.
[‘Distance’, ‘SASA’, ‘Conservation’].


	mode (str, default 'mean') – Specify what enrichment scores to use. If mode = ‘mean’, it will
use the mean of each position to classify the residues.
If mode = ‘A’, it will use the Alanine substitution profile.
Can be used for each amino acid. Use the one-letter code and
upper case.


	custom (list or dataframe or np.array, default None) – If you want to add a custom dataset to plot, use custom. On the
parameter plot, the 3rd item of the list will be the label for
your custom dataset.


	df_color (pandas dataframe, default None) – The color of each residue can also be included. You must label
that label column.


	color_by_score (boolean, default True) – If set to False, the points in the scatter will not be colored
based on the enrichment score.


	position_correction (int, default 0) – If the pdb structure has a different numbering of positions than
you dataset, you can correct for that. If your start_position = 2,
but in the PDB that same residue is at position 20,
position_correction needs to be set at 18.


	chain (str, default 'A') – Chain of the PDB file to get the coordinates and SASA from.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_html (str, default None) – If you want to export the generated graph into html, add the
path and name of the file.
Example: ‘path/filename.html’.


	**kwargs (other keyword arguments) – 


















Scatter3D plotly class


	
class mutagenesis_visualization.main.plotly.scatter_3d.Scatter3D(dataframes: mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: Optional[str] = None, start_position: Optional[int] = None, end_position: Optional[int] = None)

	This class uses plotly to generate a 3D scatter plot of the protein
and the enrichment scores.


	
__call__(pdb_path: str, mode: str = 'mean', df_coordinates: bool = None, position_correction: int = 0, chain: str = 'A', squared: bool = False, replicate: int = -1, output_html: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generates a 3-D scatter plot of the x,y,z coordinates of the C-alpha
atoms of the residues, color coded by the enrichment scores.
PDBs may have atoms missing, you should fix the PDB before using
this method. Use matplotlib for interactive plot.


	Parameters

	
	pdb (str, default None) – User should specify the path PDB.


	mode (str, default 'mean') – Specify what enrichment scores to use. If mode = ‘mean’,
it will use the mean of each position to classify the residues.
If mode = ‘A’, it will use the Alanine substitution profile.
Can be used for each amino acid. Use the one-letter code and
upper case.


	df_coordinates (pandas dataframe, default None) – If no pdb is included, the user must pass the 3-D coordinates
of the residues to plot. In here you have more flexibility
and you can select other atoms besides the C-alpha.


	position_correction (int, default 0) – If the pdb structure has a different numbering of positions
than you dataset, you can correct for that. If your
start_position = 2, but in the PDB that same residue is at
position 20, position_correction needs to be set at 18.


	chain (str, default 'A') – Chain of the PDB file to get the coordinates and SASA from.


	squared (boolean, False) – If this parameter is True, the algorithm will center the
data, and plot the square value of the distance.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_html (str, default None) – If you want to export the generated graph into html, add the
path and name of the file. Example: ‘path/filename.html’.


	**kwargs (other keyword arguments) – 


















ScatterP plotly class


	
class mutagenesis_visualization.main.plotly.scatter.ScatterP(dataframes: mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: Optional[str] = None, start_position: Optional[int] = None, end_position: Optional[int] = None)

	This class uses plotly to generate a scatter plot.


	
__call__(screen_object: Any, mode: str = 'pointmutant', show_results: bool = False, replicate: int = -1, output_html: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a scatter plot between object and a second object of the
same class.


	Parameters

	
	screen_object (object from class Screen to do the scatter with) – 


	mode (str, default 'pointmutant'.) – Alternative set to “mean” for the mean of each position.


	show_results (boolean, default False) – If set to true, will export the details of the linear fit.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_html (str, default None) – If you want to export the generated graph into html, add
the path and name of the file. Example: ‘path/filename.html’.


	**kwargs (other keyword arguments) – 


















Scatter pyplot class


	
class mutagenesis_visualization.main.scatter.scatter.Scatter(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate a kernel density plot.


	
__call__(screen_object: Union[Screen, Any], mode: Literal[mean, pointmutant] = 'pointmutant', min_score: Optional[float] = None, max_score: Optional[float] = None, replicate: int = -1, replicate_second_object: int = -1, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a scatter plot between object and a second object of the
same class.


	Parameters

	
	screen_object (object from class Screen to do the scatter with) – 


	mode (str, default 'pointmutant'.) – Alternative set to “mean” for the mean of each position.


	min_score (float, default None) – Change values below a minimum score to be that score.
i.e., setting min_score = -1 will change any value smaller
than -1 to -1.


	max_score (float, default None) – Change values below a maximum score to be that score.
i.e., setting max_score = 1 will change any value greater
than 1 to 1.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	replicate_second_object (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	output_file (str, default None) – If you want to export the generated graph, add the path and name
of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















ScatterReplicates pyplot class


	
class mutagenesis_visualization.main.scatter.scatter_replicates.ScatterReplicates(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	Class to generate scatter plots of each pairwise replicate combination.


	
__call__(wt_counts_only: bool = False, mode: Literal[mean, pointmutant] = 'pointmutant', min_score: Optional[float] = None, max_score: Optional[float] = None, output_file: Union[None, str, pathlib.Path] = None, **kwargs) → None

	Generate a series of scatter plots between replicates.


	Parameters

	
	wt_counts_only (bool, optional default False) – If set to true, it will plot the kernel distribution of the
wild type alleles only. mode will be pointmutant by default.


	mode (str, default 'pointmutant'.) – Alternative set to “mean” for the mean of each position.


	min_score (float, default None) – Change values below a minimum score to be that score.
i.e., setting min_score = -1 will change any value smaller
than -1 to -1.


	max_score (float, default None) – Change values below a maximum score to be that score.
i.e., setting max_score = 1 will change any value greater
than 1 to 1.


	output_file (str, default None) – If you want to export the generated graph, add the path and name
of the file. Example: ‘path/filename.png’ or ‘path/filename.svg’.


	**kwargs (other keyword arguments) – 


















Pymol pyplot class


	
class mutagenesis_visualization.main.pymol.pymol.Pymol(dataframes: Optional[mutagenesis_visualization.main.utils.replicates_screen_input.DataframesHolder] = None, dataframes_raw: Optional[List[pandas.core.frame.DataFrame]] = None, aminoacids: Union[str, List[str]] = '', datasets: Optional[List[numpy.ndarray[Any, numpy.dtype[ScalarType]]]] = None, sequence: str = '', sequence_raw: str = '', start_position: int = 0, secondary: Optional[List[T]] = None, secondary_dup: Optional[List[T]] = None)

	This class acts as a wrapper with the ipymol github repo.


	
__call__(pdb: Union[str, pathlib.Path], mode: str = 'mean', residues: List[str] = None, position_correction: int = 0, esthetic_parameters: bool = True, min_score: Optional[float] = None, max_score: Optional[float] = None, replicate: int = -1, **kwargs) → None

	Color pymol structure residues. User can specify the residues to
color, or can use the mutagenesis data. Activating mutations will
be colored red and loss of function blue. Neutral mutations in
green. Only works if pymol is your $PATH as pymol or you can
start PyMOL in server mode. Uses the ipymol package, which needs
to be installed from Github $pip install
git+https://github.com/cxhernandez/ipymol, not from pypi (not
updated here).

Please ensure that PyMOL is in your $PATH as pymol.


	Parameters

	
	pdb (str) – User should specify the PDB chain in the following format 4G0N_A.
If you have internet connection, Pymol will download the pdb.
Otherwise, include the path were your PDB is stored locally.


	mode (str, default 'mean') – Others: ‘snv’ ‘nonsnv’, ‘aminoacid’
Specify what enrichment scores to use. If mode = ‘mean’, it will
use the mean of each position to classify the residues. If
mode = ‘A’, it will use the Alanine substitution profile. Can be
used for each amino acid. Use the one-letter code and upper case.


	residues (list , optional) – If user decides to pass custom arguments, use the following format
residues = [‘1,2,3,4-10’,’12-15,23,24,35’,’48,49,50,52-60’] which
are [blue,red,green].


	position_correction (int, default 0) – If the pdb structure has a different numbering of positions than
you dataset, you can correct for that. If your start_position = 2,
but in the PDB that same residue is at position 20,
position_correction needs to be set at 18.


	esthetic_parameters (bool, default True) – If set to True, pymol will apply the mutagenesis_visualization
custom parameters instead of the default Pymol ones.


	min_score (float, default None) – Change values below a minimum score to be that score.
i.e., setting min_score = -1 will change any value smaller
than -1 to -1.


	max_score (float, default None) – Change values below a maximum score to be that score.
i.e., setting max_score = 1 will change any value greater
than 1 to 1.


	replicate (int, default -1) – Set the replicate to plot. By default, the mean is plotted.
First replicate start with index 0.
If there is only one replicate, then leave this parameter
untouched.


	**kwargs (other keyword arguments) – 
	gofint, default is 1

	cutoff for determining gain of function mutations based on
mutagenesis data.



	lofint, default is -1

	cutoff for determining loss of function mutations based on
mutagenesis data.



	colorstr, default ‘chlorine’

	Choose color to color neutral.



	color_gofstr, default ‘red’

	Choose color to color positions with an enrichment score > gof.



	color_lofstr, default ‘neptunium’

	Choose color to color positions with an enrichment score < lof.












	Returns

	
	Open pymol session with a fetched pdb structure where the residues


	are colored according to the enrichment scores.






















Functions


	
mutagenesis_visualization.calculate_enrichment(aminoacids: Union[List[str], str], pre_lib: Union[str, pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[ScalarType]]], post_lib: Union[str, pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[ScalarType]]], pre_wt: Union[str, None, numpy.ndarray[Any, numpy.dtype[ScalarType]]] = None, post_wt: Union[str, None, numpy.ndarray[Any, numpy.dtype[ScalarType]]] = None, zeroing_method: Literal[none, zscore, counts, wt, wt synonymous, kernel, population] = 'population', zeroing_metric: Literal[mean, mode, median] = 'median', stopcodon: bool = True, min_counts: int = 25, min_countswt: int = 100, std_scale: Optional[float] = 0.2, mad_filtering: int = 2, mwt: float = 2, infinite: float = 3, output_file: Union[None, str, pathlib.Path] = None) → numpy.ndarray[Any, numpy.dtype[ScalarType]]

	Determine the enrichment scores of a selection experiment, where there
is a preselected population (input) and a selected population (output).


	Parameters

	
	aminoacids (list, str) – Index of aminoacids (in order). Stop codon needs to be ‘*’.


	pre_lib (str, pandas dataframe or np.array) – Can be filepath and name of the exported txt file, dataframe or
np.array.


	post_lib (str, pandas dataframe or np.array) – Can be filepath and name of the exported txt file, dataframe or
np.array.


	pre_wt (str, or np.array, optional) – Str with filepath and name of the exported txt file or np.array.


	post_wt (str, or np.array, optional) – Str with filepath and name of the exported txt file or np.array.


	zeroing_method (str, default 'population') – Method to normalize the data.
Can also use ‘none’, ‘zscore’, ‘counts’, ‘wt’ or ‘kernel’.
If ‘wt’ is used ‘pre_wt’ must not be set to None.


	zeroing_metric (str, default 'median') – Metric to zero the data. Only works if zeroing_method=’population’
or ‘wt’. Can also be set to ‘mean’ or ‘mode’.


	stopcodon (boolean, default False) – Use the enrichment score stop codons as a metric to determine
the minimum enrichment score.


	min_counts (int, default 25) – If mutant has less than the min_counts, it will be replaced by
np.nan.


	min_countswt (int, default 100) – If synonymous wild-type mutant has less than the min_counts, it
will be replaced by np.nan.


	std_scale (float, default 0.2) – Factor by which the population is scaled. Set to None if you don’t
want to scale the data.


	mad_filtering (int, default 2) – Will apply MAD (median absolute deviation) filtering to data.


	mwt (int, default 2) – When MAD filtering is applied, mad_filtering is the number of
medians away a data point must be to be discarded. mwt is only
used when the population of wild-type alleles is the reference
for data zeroing_method.


	infinite (int, default 3) – It will replace +infinite values with +3 and -infinite with -3.


	output_file (str, default None) – If you want to export the generated files, add the path and name.
Example: ‘path/filename.txt’. File will be save as a txt, csv, xlsx file.






	Returns

	zeroed – A np.array containing the enrichment scores.



	Return type

	ndarray










	
mutagenesis_visualization.count_reads(dna_sequence: str, input_file: Union[str, pathlib.Path], codon_list: Union[List[str], str] = 'NNS', counts_wt: bool = True, start_position: int = 2, output_file: Union[None, str, pathlib.Path] = None, full: bool = False) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]

	Process a trimmed fastq file containing DNA reads and returns the
counts of each DNA sequence specified by the user.


	Parameters

	
	dna_sequence (str,) – Contains the DNA sequence of the allele of reference (usually
wild-type).


	input_file (str, default None) – Path and name of the fastq file (full name including suffix
“.fastq”).


	codon_list (list or str, default 'NNS') – Input a list of the codons that were used to create point mutations.
Example: [“GCC”, “GCG”, “TGC”].
If the library was built using NNS and NNK codons, it is enough
to input ‘NNS’ or ‘NNK’ as a string. It is important to know
that the order of the codon_list will determine the output order.


	counts_wt (boolean, default True) – If true it will add the counts to the wt allele. If false, it
will set it up to np.nan.


	start_position (int, default 2) – First position in the protein sequence that will be used for the
first column of the array. If a protein has been mutated only
from residue 100-150, then if start_position = 100, the algorithm
will trim the first 99 amino acids in the input sequence. The last
residue will be calculated based on the length of the input array.
We have set the default value to 2 because normally the Methionine
in position 1 is not mutated.


	output_file (str, default None) – If you want to export the generated files, add the path and name
of the file without suffix.
Example: ‘path/filename.xlsx’.


	full (bool, optional) – Switch determining nature of return value. When it is False
(the default) just the reads are returned, when True diagnostic
information from the fastq analysis is also returned.






	Returns

	
	df_counts (dataframe) – Dataframe with the counts for each point mutant.


	wt_counts (list) – List of the counts for each for each DNA sequence that codes for
the wild-type protein.


	useful_reads (str) – Present only if full = True. Contains the useful reads.















	
mutagenesis_visualization.count_fastq(variants: List[str], input_file: Union[str, pathlib.Path]) → Tuple[dict, int, int]

	Count the frequency of variants in the input fastq file.


	Parameters

	
	variants (list) – 


	input_file (str, default None) – Path and name of the fastq file (full name including suffix “.fastq”).






	Returns

	
	variants (ordered dict) – Same input dictionary by now has the values updated with the counts.


	totalreads (int) – Total number of DNA chains that appear in the fastq file.


	usefulreads (int) – Total number of identified DNA chains. Calculated as the sum of
all the key values.















	
mutagenesis_visualization.load_demo_datasets() → Dict[str, pandas.core.frame.DataFrame]

	Loads example datasets so the user can play with it.


	Returns

	data_dict – Dictionary that contains the datasets used to create the plots on the documentation.



	Return type

	Dict[str, DataFrame]










	
mutagenesis_visualization.run_demo(figure: Literal[heatmap, miniheatmap, mean, kernel, pca, position, secondary_mean, correlation, individual_correlation, pymol] = 'heatmap', show: bool = True) → None

	Performs a demonstration of the mutagenesis_visualization software.


	Parameters

	
	figure (str, default 'heatmap') – There are a few example plots that can be displayed to test the
package is working on your station. The options are ‘heatmap’,
‘miniheatmap’, ‘mean’, ‘kernel’, ‘pca’ ‘position’, ‘secondary_mean’,
‘correlation’, ‘individual_correlation’ and ‘pymol’.
Check the documentation for more information.


	show (boolean, default True) – If True, will execute plt.show() for each figure.












The following function generate_default_kwargs is not called by the user as a function. It contains the kwargs that
are parameters of the Screen methods.


	
mutagenesis_visualization.main.utils.kwargs.generate_default_kwargs() → Dict[str, Any]

	Kwargs used in the methods and some other functions. Not all kwargs work on
each method, read the individual description. Don’t call this function
on its own, use the parameters within the plotting methods.

Example: mut.heatmap(colormap=colormap of interest)


	Parameters

	
	colormap (cmap, default custom bluewhitered) – Used for heatmaps. You can use your own colormap or the ones provided by
matplotlib. Example colormap = copy.copy((plt.cm.get_cmap(‘Blues_r’)))


	colorbar_scale (tuple, default [-1, 1]) – Scale min and max used in heatmaps and correlation heatmaps.


	color (str, default 'k') – Color used for the kernel plot line, the histogram, the bar plots.


	title (str, default 'Title') – Title of plot.


	x_label (str, default 'x_label') – Label of x axis.


	y_label (str, default 'y_label') – Label of y axis.


	xscale (tuple, default (None, None)) – MinMax of x axis.


	yscale (tuple, default (None, None)) – MinMax of y axis.


	tick_spacing (int, default 1) – Space of axis ticks. Used for scatter and cumulative plots.


	outputfilepath (str, default '') – Path where file will be exported to.


	outputfilename (str, default '') – Name of the exported file.


	dpi (int, default 600) – Dots Per Inch in the created image.


	neworder_aminoacids (list, default list('DEKHRGNQASTPCVYMILFW*')) – Order of amino acids to display in heatmaps. Used for heatmaps.


	gof (int, default 1) – Cutoff of the enrichment score to classify a mutation as gain of function.
Used on pymol and 3D methods.


	lof (int, default -1) – Cutoff of the enrichment score to classify a mutation as loss of funtion.
Used on pymol and 3D methods.


	color_gof (str, default 'red') – Color to color mutations above the gof cutoff.
Used in pymol, 3D and mean methods.


	color_lof (str, default 'blue') – Color to color mutations below the lof cutoff.
Used in pymol, 3D and mean methods.


	cartoon_colors (list, default ['lightgreen', 'lavender', 'k']) – Colors used for secondary structure cartoon. Used for heatmap, mean and mean_count plots.


	text_labels (str, default 'None') – Text labels that you can add to mean and mean_count plots. You will need to specify the coordinates.


	show (boolean, default True) – Whether to execute plt.show() or not on a matplotlib object.


	close (boolean, default False) – Whether to execute plt.close() or not on a matplotlib object.


	random_state (int, default 554) – Random state used for PCA function.


	bins (int or str, default 'auto'.) – Number of bins for the histogram. By default it will
automatically decide the number of bins.


	return_plot_object (boolean, default False) – If true, will return plotting object.


	figsize_x (int) – 


	figsize_y (int) – 


	legend_fontsize (int, default 10) – 






	Returns

	default_kwargs – Dictionary with the default kwargs.



	Return type

	dict












          

      

      

    

  

    
      
          
            
  
Tutorial introduction

Let’s take a look to the workflow:

[image: image0]

To start, you can use this software to design site-saturation
sequences (doc1_library.ipynb). From here, you will pause your work
with Mutagenesis_visualization to synthesize the site-saturation
sequences using Twist Bio, Agilent, etc. Once you have got your DNA
library ready, you will perform the necessary experiments and sequence
the samples. After that, you will use a bioinformatics software (ie
Flash) to pair the unpaired reads. Then you will trim the adapters to
generate FASTQ files.

Now you will return to the software to conduct the data processing
of your experiment (doc2_processing.ipynb). Mutagenesis_visualization
will read the FASTQ files and return the counts per variant. At this
point, there are a few visualization plots that you can create in order
to assess the quality of the DNA library. After that, you will calculate
the enrichment scores using the calculate_enrichment function (you will
need a pre-selection and a post-selection dataset). There are different
ways of conducting the data normalization, and you should see what
parameters fit your interests best (doc3_normalizing.ipynb).

With the enrichment scores in hand, you will have multiple options to
plot and visualize the data, including heatmaps, histograms, scatter
plots, PCA analysis, Pymol figures, and more (doc4a_heatmaps.ipynb and
doc4b_plotting.ipynb) and (doc5_plotly.ipynb). We have compiled
other people’s datasets and visualized them
(doc6_other_datasets.ipynb).

You can access the jupyter notebooks and play with the code in
mybinder [https://mybinder.org/v2/gh/fhidalgor/mutagenesis_visualization/HEAD?filepath=mutagenesis_visualization%2Ftutorial%2F].




          

      

      

    

  

    
      
          
            
  
Design DNA libraries

In this section we will generate the primers that are used to do
saturation mutagenesis on proteins (ie. NNS primers).

We will also generate each possible point mutant sequence and export it
to a Fasta file, which can be useful if you use Twist Bioscience to
generate your site saturation library.


	Classes reviewed in this notebook:

	
	mutagenesis_visualization.GeneratePrimers


	mutagenesis_visualization.CreateVariants









Design primers

Now we will define the dna sequence, the beginning and end of the
mutable part.

from typing import List
from pandas.core.frame import DataFrame
from mutagenesis_visualization import GeneratePrimers

# DNA
dna: str = 'TGTACAGTAATACAAGGGGTGTTATGGAAAAAATTATGCCGGAAGAAGAATACAGCGAATTTAAAGAACTGATTCTGCAGAAGGAACTGCACGTGGTGTATGCACTGAGCCACGTGTGTGGCCAGGATCGTACCCTGCTGGCCAGTATCTTACTGCGCATCTTTCTGCACGAGAAGCTGGAGAGCCTGTTACTGTGCACACTGAACGATCGCGAGATCAGCATGGAAGATGAAGCCACCACCCTGTTCCGCGCAACAACCCTGGCCAGCACCCTGATGGAGCAGTATATGAAAGCCACCGCCACCCAGTTCGTGCATCATGCCCTGAAAGATAGCATTTTAAAAATTATGGAAAGCAAACAGAGCTGCGAACTGAGCCCGAGCAAGCTGGAGAAAAACGAGGACGTGAACACCAACCTGACCCACCTGCTGAACATTCTGAGCGAACTGGTGGAAAAAATCTTTATGGCAAGCGAAATCCTGCCTCCGACCCTGCGTTACATCTACGGCTGCCTGCAGAAGAGCGTGCAGCATAAATGGCCGACCAATACCACCATGCGCACACGTGTGGTGAGCGGTTTTGTGTTCCTGCGTCTGATCTGCCCGGCAATCCTGAACCCGCGCATGTTCAACATCATTAGCGACAGCCCGAGTCCTATCGCAGCACGTACCCTGATCCTGGTGGCAAAAAGCGTGCAAAATCTGGCCAACCTGGTGGAATTTGGCGCCAAAGAGCCGTACATGGAAGGCGTGAATCCGTTTATCAAAAGTAACAAACATCGCATGATCATGTTCCTGGACGAACTGGGCAACGTTCCGGAACTGCCGGATACAACCGAACATAGTCGCACAGACCTGAGTCGTGACCTGGCCGCCCTGCATGAAATCTGCGTGGCCCATAGCGATGAGCTGCGCACACTGAGCAACGAGCGTGGCGCCCAGCAGCACGTGCTGAAGAAACTGCTGGCCATTACCGAACTGCTGCAACAAAAGCAGAACCAGTACACCAAAACCAACGACGTGCGTtatccgtatgatgtgccggattatgcgccatcacttggctagaggcatc'
                                               #^
# Start of protein. Note 'ATG' codon is the first codon.
start: str = 'ATGGAAAAAATTATGCCGGAAGAA'

# The 'tat' codon will be the first codon that is not mutated
end: str = 'tatccgtatgatgtgccggattatgcg'

# Initialize instance of class GeneratePrimers
generate_primers : GeneratePrimers = GeneratePrimers(dna, start, end)





Set all primers to have the same base pair length.

df_primers: DataFrame = generate_primers(codon='NNS', length_primer=15)





Set all primers to have the same melting temperature.

df_primers_tm: DataFrame = generate_primers(codon='NNS', melting_temp=60)





If you just want to export the file to excel. This command must be run
after first generating a dataframe.

generate_primers.export_file(output_file="path/to/file.xlsx")





[image: _images/primers.png]


Design site-saturation sequences

Define dna sequence and the list of codons that we want to use to
generate the mutants.

from mutagenesis_visualization import CreateVariants

# list of codons we want to use
codon_list: List[str] = ["GCC", "GCG", "TGC", "GAC", "GAG", "TTC"]
# DNA sequence we are going to use as the template
dna: str = 'ATGGCCGTGGGGTGTTATGGATGTACAGTAATACAAGGGGTGTTATGGAAAAAATTATGCCGGAAGAAGAATACAGCGAATTTAAAG'

# Initialize instance
create_variants: CreateVariants = CreateVariants()





Get a dataframe with the sequences:

df_variants: DataFrame = create_variants(dna, codon_list)





If you just want to export the file to fasta. This command must be run
after first generating a dataframe.

create_variants.export_file(output_file="path/to/sequences.fasta")





[image: _images/fasta.png]
If you just want to export the file to excel:

create_variants.export_file(output_file="path/to/sequences.xlsx")









          

      

      

    

  

    
      
          
            
  
Processing DNA reads

This section will teach you how to use the built-in data muting
functions. If you already have your own muting pipeline built, you can
skip this section and go to the plotting examples.


Import module

%matplotlib inline
from typing import List
import numpy as np
import pandas as pd
from pandas.core.frame import DataFrame
from mutagenesis_visualization import count_reads
from mutagenesis_visualization import count_fastq
from mutagenesis_visualization import calculate_enrichment

from mutagenesis_visualization.main.utils.data_paths import HRAS_FASTQ, HRAS_GAPGEF_COUNTS
from mutagenesis_visualization import Counts
from mutagenesis_visualization import Screen







Count DNA reads from fastq file


Site saturation mutagenesis


	Methods and functions reviewed in this notebook:

	
	mutagenesis_visualization.count_fastq()


	mutagenesis_visualization.count_reads()


	mutagenesis_visualization.Counts








After sequencing your DNA library, using other packages you will
assemble the forward and reverse reads and trim the flanking bases. That
will produce a trimmed fastq file that contains the DNA reads. This is
where mutagenesis_visualization kicks in. The following function
count_reads will read your trimmed fastq file and count the number
of times a DNA sequence is present. You will have to pass as inputs a
dna_sequence and a codon_list with the codons that were used to
make the point mutant library. If savefile=True , it will export the
results to txt files. Below there is a prettified example of the output
file.

# H-Ras dna sequence
hras_dnasequence: str = 'acggaatataagctggtggtggtgggcgccggcggtgtgggcaagagtgcgctgaccat'\
    + 'ccagctgatccagaaccattttgtggacgaatacgaccccactatagaggattcctaccggaagcaggtgg'\
    + 'tcattgatggggagacgtgcctgttggacatcctg'

# Codons used to make the NNS library. I could also have used 'NNS' and the package will use the NNS codons
codon_list: List[str] = [
    "GCC", "GCG", "TGC", "GAC", "GAG", "TTC", "GGC", "GGG", "CAC", "ATC", "AAG",
    "CTC", "CTG", "TTG", "ATG", "AAC", "CCC", "CCG", "CAG", "CGC", "CGG", "AGG",
    "TCC", "TCG", "AGC", "ACC", "ACG", "GTC", "GTG", "TGG", "TAC", "TAG"
]

counts_wt: bool = False
start_position: int = 2

# Execute count reads
df_counts_pre, wt_counts_pre = count_reads(
    hras_dnasequence, HRAS_FASTQ, codon_list, counts_wt, start_position)





[image: _images/hras_tablecounts.png]
Create object of class Counts.

hras_obj = Counts(df_counts_pre, start_position = 2)





Once the reads have been counted, the method mean_counts can be used
to evaluate the coverage by position. The method
library_representation will tell you the percentage coverage of each
amino acid per position.

hras_obj.mean_counts(title='H-Ras mean counts per position')

hras_obj.library_representation(title='H-Ras amino acid coverage')





[image: _images/hras_countspre.png]
[image: _images/hras_countspre_aacoverage.png]


Custom DNA list

Use a custom input DNA list. That way it does not matter if you are
using NNS or you have second order mutations. Create a list of variants
on your own, and the software will count the frequency of each of those
variants on the fastq file you provide as an input. In the example non
of the sequences we are specifying are found in the trimmed file, thus
there are 0% of useful reads.

# Create your list of variants
variants: List[str] = [
    'acggaatataagctggtggtggtgggcgccggcggtgtgggcaagagtgcgctgaccat' +
    'ccagctgatccagaaccattttgtggacgaatacgaccccactatagaggattcctaccggaagcaggtgg' +
    'tcattgatggggagacgtgcctgttggacatcctg',
    'aaaaaatataagctggtggtggtgggcgccggcggtgtgggcaagagtgcgctgaccat' +
    'ccagctgatccagaaccattttgtggacgaatacgaccccactatagaggattcctaccggaagcaggtgg' +
    'tcattgatggggagacgtgcctgttggacatcctg',
    'tttttttataagctggtggtggtgggcgccggcggtgtgggcaagagtgcgctgaccat' +
    'ccagctgatccagaaccattttgtggacgaatacgaccccactatagaggattcctaccggaagcaggtgg' +
    'tcattgatggggagacgtgcctgttggacatcctg'
]

variants, totalreads, usefulreads = count_fastq(variants, HRAS_FASTQ)

# Evaluate how many variants in the fastq file were useful
print(
    '{}/{} useful reads ({}%)'.format(
        str(usefulreads), str(totalreads),
        str(int(usefulreads / totalreads * 100))
    )
)








Calculate enrichment scores


	Methods and functions reviewed in this section:

	
	mutagenesis_visualization.Screen


	mutagenesis_visualization.calculate_enrichment()








If you are performing a selection experiment, where you sequence your
library before and after selection, you will need to calculate the
enrichment score of each mutant. The function to do so is
calculate_enrichment. This function allows for different parameters
to tune how the data is muted and normalized.

In this example, we show two different ways of using calculate_enrichment. Note that the parameters of choice will have a say on the final result. In the example, the tonality of red of the two heatmaps is slightly different. A more detailed explanation of the parameters can be found in Normalizing datasets.

# Read counts from file (could be txt, csv, xlsx, etc...)
df_counts_pre: DataFrame = pd.read_excel(
    HRAS_GAPGEF_COUNTS,
    'R1_before',
    skiprows=1,
    index_col='Codons',
    usecols='E:FN',
    nrows=32
)

df_counts_sel: DataFrame = pd.read_excel(
    HRAS_GAPGEF_COUNTS,
    'R1_after',
    skiprows=1,
    index_col='Codons',
    usecols='E:FN',
    nrows=32
)





# Ras parameters to create an object

# Define protein sequence
hras_sequence: str = 'MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEY'\
                + 'SAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAARTVES'\
                + 'RQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQHKLRKLNPPDESGPG'

# Order of amino acid substitutions in the hras_enrichment dataset
aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

# First residue of the hras_enrichment dataset. Because 1-Met was not mutated, the dataset starts at residue 2
start_position: int = 2

# Define secondary structure
secondary = [['L0'], ['β1'] * (9 - 1), ['L1'] * (15 - 9), ['α1'] * (25 - 15),
             ['L2'] * (36 - 25), ['β2'] * (46 - 36), ['L3'] * (48 - 46),
             ['β3'] * (58 - 48), ['L4'] * (64 - 58), ['α2'] * (74 - 64),
             ['L5'] * (76 - 74), ['β4'] * (83 - 76), ['L6'] * (86 - 83),
             ['α3'] * (103 - 86), ['L7'] * (110 - 103), ['β5'] * (116 - 110),
             ['L8'] * (126 - 116), ['α4'] * (137 - 126), ['L9'] * (140 - 137),
             ['β6'] * (143 - 140), ['L10'] * (151 - 143), ['α5'] * (172 - 151),
             ['L11'] * (190 - 172)]

# Substitute Nan values with 0
fillna = 0





# Order of amino acids (from count_reads)
aminoacids_NNS: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')

# Different parameters can be used to calculate the enrichment scores. They are described in the implementation section

# Zeroing using the median of the population, and not using stop codons to correct.
frequencies = calculate_enrichment(
    aminoacids=aminoacids_NNS,
    pre_lib=df_counts_pre.iloc[:, :54],
    post_lib=df_counts_sel.iloc[:, :54],
    zeroing_method='population',
    zeroing_metric ='median',
    norm_std=True,
    stopcodon=True,
    min_counts=25,
    min_countswt=100,
    mpop=2,
    mwt=2,
    infinite=3,
    std_scale=0.3
)

hras_example1 = Screen(
    np.array(frequencies), hras_sequence, aminoacids, start_position, fillna,
    secondary
)

hras_example1.heatmap(title='Normal distribution zeroing', output_file=None)

# Zeroing using the median of the population, and not using stop codons to correct.
frequencies = calculate_enrichment(
    aminoacids=aminoacids_NNS,
    pre_lib=df_counts_pre.iloc[:, :54],
    post_lib=df_counts_sel.iloc[:, :54],
    zeroing_method='kernel',
    zeroing_metric ='median',
    norm_std=True,
    stopcodon=True,
    min_counts=25,
    min_countswt=100,
    mpop=2,
    mwt=2,
    infinite=3,
    std_scale=0.15
)

hras_example2 = Screen(
    np.array(frequencies), hras_sequence, aminoacids, start_position, fillna,
    secondary
)

hras_example2.heatmap(title='KDE zeroing', output_file=None)

# Note that the two heatmaps look quite similar but the red tonality is slighly different. That is caused by
# small differences in zeroing the data.
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Normalizing datasets

This section will teach the different options to normalize the data using the function mutagenesis_visualization.calculate_enrichment() .

If you already have your own processing pipeline built, you can skip this section and go to the (Creating plots) examples.


Import modules and load data

%matplotlib inline
from typing import List, Dict
import numpy as np
import pandas as pd
from pandas.core.frame import DataFrame

from mutagenesis_visualization import calculate_enrichment
from mutagenesis_visualization.main.utils.data_paths import HRAS_RBD_COUNTS
from mutagenesis_visualization import Screen





Now let’s add some information about Ras.

# Define protein sequence
hras_sequence: str = 'MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEY'\
                + 'SAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAARTVES'\
                + 'RQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQHKLRKLNPPDESGPG'


# First residue of the hras_enrichment dataset. Because 1-Met was not mutated, the dataset starts at residue 2
start_position: int = 2

# Substitute Nan values with 0
fillna: int = 0





# List of sheets and columns to use
sheets_pre: List[str] = ['R1_before', 'R2_before', 'R3_before']
sheets_sel: List[str] = ['R1_after', 'R2_after', 'R3_after']
columns: List[str] = ['F:BG', 'BH:DK', 'DL:FN']
columns_wt: List[str] = ['A', 'B', 'C']

# Create dictionary with data. Loading 3 replicates, each of them is divided into 3 pools
dict_pre, dict_sel, dict_pre_wt, dict_sel_wt = ({} for i in range(4))

# Read counts from file (could be txt, csv, xlsx, etc...)
for column, column_wt in zip(columns, columns_wt):
    for sheet_pre, sheet_sel in zip(sheets_pre, sheets_sel):
        # Pre counts
        label_pre = str(sheet_pre + '_' + column_wt)
        dict_pre[label_pre] = pd.read_excel(
            HRAS_RBD_COUNTS, sheet_pre, skiprows=1, usecols=column, nrows=32
        )
        # Pre counts wild-type alleles
        dict_pre_wt[label_pre] = pd.read_excel(
            HRAS_RBD_COUNTS, sheet_pre, usecols=column_wt
        )

        # Sel counts
        label_sel = str(sheet_sel + '_' + column_wt)
        dict_sel[label_sel] = pd.read_excel(
            HRAS_RBD_COUNTS, sheet_sel, skiprows=1, usecols=column, nrows=32
        )
        # Sel counts wild-type alleles
        dict_sel_wt[label_sel] = pd.read_excel(
            HRAS_RBD_COUNTS, sheet_sel, usecols=column_wt
        )







Calculate log10 enrichment

Now we are going to calculate the log10(sel/pre) for the sublibrary 1 of
each replicate and plot a histogram. The resulting distribution is
bimodal, and because the three replicates have a similar number of
counts ratios, their center is overlapping. However, because we have not
normalized by the number of counts, and there are more counts in the
selected than in the pre-selected population, the center is >0.

# Auxiliar function to convert +-inf values to an arbitrary number (ie +-2)
def _replace_inf(df: DataFrame) -> DataFrame:
    df.replace(to_replace=np.inf, value=2, inplace=True)
    df.replace(to_replace=-np.inf, value=-2, inplace=True)
    return df


aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')
enrichment = {}

# calculate log10 enrichment for each replicate
for pre_key, sel_key in zip(list(dict_pre.keys())[:3],
                            list(dict_sel.keys())[:3]):
    # log 10
    enrichment_log10 = (np.log10(dict_sel[sel_key] / dict_pre[pre_key]))
    enrichment_log10['aminoacids'] = aminoacids
    enrichment_log10.set_index(['aminoacids'], inplace=True)
    enrichment[pre_key[:2]] = _replace_inf(enrichment_log10)

# Create objects
hras_object: Screen = Screen(
    list(enrichment.values()), hras_sequence, aminoacids, start_position, fillna,
)

hras_object.kernel(show_replicates=True, kernel_color_replicates = ["b", "r", "g"], title=r'$log_{10}$' + '(sel/pre)', xscale=(-1, 1))





[image: _images/hras_kdesub1.png]


Centering the data (zeroing)


	Functions used in this section:

	
	mutagenesis_visualization.main.kernel.kernel.Kernel


	mutagenesis_visualization.calculate_enrichment()









Counts normalization

Normalizing by the number of counts improves normalization. Now the
population center is closer to 0. To do so, set
zeroing_method='counts'.

enrichment = {}
aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')
# calculate log10 enrichment for each replicate
for pre_key, sel_key in zip(list(dict_pre.keys())[:3],
                            list(dict_sel.keys())[:3]):
    # Enrichment
    enrichment[pre_key[:2]] = calculate_enrichment(
        aminoacids, dict_pre[pre_key], dict_sel[sel_key], zeroing_method='counts', stopcodon=False
    )

# Plot histogram and KDE
aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

hras_object: Screen = Screen(
    list(enrichment.values()), hras_sequence, aminoacids, start_position, fillna,
)

hras_object.kernel(show_replicates=True, kernel_color_replicates = ["b", "r", "g"], title='zeroing_method = counts', xscale=(-1, 0.5))





[image: _images/hras_zeroingcounts.png]


Wt allele

Another way we can normalize is by using an internal reference such as a
particular mutant. In the following example we will use the wild-type
allele. If the assay that you are using is noisy, relying on a single
data point for normalizing will result in high variance. The package
does not include this option because it may lead to errors. Here we are
showing how it would be done by hand. In this example, it works fine.
But in other datasets we have, it has been a source of error.

# calculate log10 enrichment for each replicate

aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')
enrichment = {}

# calculate log10 enrichment for each replicate
for pre_key, sel_key in zip(list(dict_pre.keys())[:3],
                            list(dict_sel.keys())[:3]):
    # log 10
    wt_ratio = np.log10(
        dict_sel_wt[sel_key]['wt 2-56'][1] / dict_pre_wt[pre_key]['wt 2-56'][1]
    )
    enrichment_log10 = np.log10(
        dict_sel[sel_key] / dict_pre[pre_key]
    ) - wt_ratio
    enrichment_log10['aminoacids'] = aminoacids
    enrichment_log10.set_index(['aminoacids'], inplace=True)
    enrichment[pre_key[:2]] = _replace_inf(enrichment_log10)

hras_object: Screen = Screen(
    list(enrichment.values()), hras_sequence, aminoacids, start_position, fillna,
)
hras_object.kernel(show_replicates=True, kernel_color_replicates = ["b", "r", "g"], title='zeroing_method = wt allele only', xscale=(-0.5, 0.5))





[image: _images/hras_zeroingwtallele.png]


Distribution of synonymous wt alleles

In our experience, it is better to use the median/mode/mean of the
synonymous wild-type population because there is less variance.
calculate_enrichment has such an options by using
zeroing_method='wt' and then
zeroing_metric ='median', 'mean' or 'mode'.

enrichment = {}
aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')

# calculate log10 enrichment for each replicate
for pre_key, sel_key in zip(list(dict_pre.keys())[:3],
                            list(dict_sel.keys())[:3]):
    # Enrichment
    enrichment[pre_key[:2]] = calculate_enrichment(
        aminoacids,
        dict_pre[pre_key],
        dict_sel[sel_key],
        dict_pre_wt[pre_key],
        dict_sel_wt[sel_key],
        zeroing_method='wt',
        zeroing_metric ='mode',
        stopcodon=False
    )

aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

hras_object: Screen = Screen(
    list(enrichment.values()), hras_sequence, aminoacids, start_position, fillna,
)
hras_object.kernel(show_replicates=True, title='Sublibrary 1, zeroing_method = wt', xscale=(-1.5, 1))





[image: _images/hras_zeroingwtpop.png]


Wt alleles observation

If the population of synonymous wild-type alleles (alleles that are
wild-type at a protein level, but not at a DNA level) is small, the
distribution of this variants may have high variance from sample to
sample. Also, you will notice that not all wild-type alleles are
neutral. The spread of these alleles gives a sense of the noise in the
experiment.

At least for the following data, there is no correlation between the
performance of wild-type alleles in different replicates, suggesting
that the higher or lower enrichment scores are caused by noise and not a
fitness difference caused by changes in protein expression.

hras_object.kernel(show_replicates=True, wt_counts_only=True,title='Wild-type alleles', kernel_colors=['k', 'crimson', 'dodgerblue', 'g', 'silver'], xscale=(-0.5, 1), output_file="docs/images/exported_images/hras_wildtype_distribution.png")





[image: _images/hras_wildtype_distribution.png]
Perform the scatter plots:

hras_object.scatter_replicates(wt_counts_only=True,title='Wild-type alleles', xscale=(-1, 1), yscale=(-1, 1), output_file="docs/images/exported_images/hras_wildtype_scatter.png")





[image: _images/hras_wildtype_scatter_1_vs_2.png]
[image: _images/hras_wildtype_scatter_1_vs_3.png]
[image: _images/hras_wildtype_scatter_2_vs_3.png]


Distribution of mutants

An alternative option to normalize the data is to use the
mean/median/mode of the population to some specific number such as zero.
To do so, use zeroing_method='population'. The parameters of the
distribution will be calculated assuming a gaussian distribution. Not
only the three replicates are centered, but also they have the same
spread.

enrichment = {}
aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')

# calculate log10 enrichment for each replicate
for pre_key, sel_key in zip(list(dict_pre.keys())[:3],
                            list(dict_sel.keys())[:3]):
    # Enrichment
    enrichment[pre_key[:2]]  = calculate_enrichment(
        aminoacids,
        dict_pre[pre_key],
        dict_sel[sel_key],
        zeroing_method='population',
        zeroing_metric ='mode',
        stopcodon=False
    )

aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

hras_object: Screen = Screen(
    list(enrichment.values()), hras_sequence, aminoacids, start_position, fillna,
)
hras_object.kernel(show_replicates=True, title='zeroing_method = population', xscale=(-1, 1))





[image: _images/hras_zeroingpopulation.png]
A variant of the previous method is to calculate the kernel density
estimate using zeroing_method='kernel'. This option centers the
population using the mode of the KDE. If the data is bimodal, it will
select the main peak. Furthermore, it will use the standard deviation of
the main peak to scale the data. This method is useful when you have
split your library into multiple pools because it will not only center
the data properly but also do scale the data so each pool main peak has
the same standard deviation. Results are quite similar to setting
zeroing_method='population' and zeroing_metric ='mode'.

enrichment = {}
aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')

# calculate log10 enrichment for each replicate
for pre_key, sel_key in zip(list(dict_pre.keys())[:3],
                            list(dict_sel.keys())[:3]):
    # Enrichment
    enrichment[pre_key[:2]] = calculate_enrichment(
        aminoacids, dict_pre[pre_key], dict_sel[sel_key], zeroing_method='kernel', stopcodon=False
    )

aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

hras_object: Screen = Screen(
    list(enrichment.values()), hras_sequence, aminoacids, start_position, fillna,
)
hras_object.kernel(show_replicates=True, kernel_color_replicates = ["b", "r", "g"],  title='zeroing method = kernel', xscale=(-1.5,1))





[image: _images/hras_zeroingkernel.png]



Baseline subtraction

Including stop codons in the library can be of great use because it
gives a control for basal signal in your assay. The algorithm has the
option to apply a baseline subtraction. The way it works is it sets the
stop codons counts of the selected population to 0 (baseline) and
subtracts the the baseline signal to every other mutant. To use this
option, set stopcodon=True. You will notice that it get rids of the
shoulder peak, and now the distribution looks unimodal with a big left
shoulder.

enrichment = {}
aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')

# calculate log10 enrichment for each replicate
for pre_key, sel_key in zip(list(dict_pre.keys())[:3],
                            list(dict_sel.keys())[:3]):
    # Enrichment
    enrichment[pre_key[:2]] = calculate_enrichment(
        aminoacids, dict_pre[pre_key], dict_sel[sel_key], zeroing_method='kernel', stopcodon=True
    )

aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

hras_object: Screen = Screen(
    list(enrichment.values()), hras_sequence, aminoacids, start_position, fillna,
)
hras_object.kernel(show_replicates=True, kernel_color_replicates = ["b", "r", "g"], title='stop codon correction', xscale=(-5, 1.5))





[image: _images/hras_baselinesubtr.png]


Scaling

By now you probably have realized that different options of
normalization affect to the spread of the data. The rank between each
mutant is unchanged between the different methods, so it is a matter of
multiplying/dividing by a scalar to adjust the data spread. Changing the
value of the parameter std_scale will do the job. You will probably
do some trial an error until you find the right value. In the following
example we are changing the std_scale parameter for each of the
three replicates shown. Note that the higher the scalar, the higher the
spread.

enrichment_scalar = {}
scalars: List[str] = [0.1, 0.2, 0.3]
aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')

# calculate log10 enrichment for each replicate
for pre_key, sel_key, scalar in zip(list(dict_pre.keys())[:3],
                                    list(dict_sel.keys())[:3], scalars):
    # Enrichment
    enrichment_log10 = calculate_enrichment(
        aminoacids,
        dict_pre[pre_key],
        dict_sel[sel_key],
        zeroing_method='kernel',
        stopcodon=True,
        std_scale=scalar
    )
    enrichment_scalar[pre_key[:2]] = enrichment_log10


aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

hras_object: Screen = Screen(
    list(enrichment_scalar.values()), hras_sequence, aminoacids, start_position, fillna,
)
hras_object.kernel(show_replicates=True, kernel_color_replicates = ["b", "r", "g"], title='scaling', xscale=(-5, 1.5))





[image: _images/hras_scaling.png]


Multiple sublibraries

In our own research projects, where we have multiple DNA pools, we have
determined that the combination of parameters that best suit us it to
the wild-type synonymous sequences to do a first data normalization
step. Then use zeroing_method = 'kernel' to zero the data and use
stopcodon=True in order to determine the baseline level of signal.
You may need to use different parameters for your purposes. Feel free to
get in touch if you have questions regarding data normalization.

# Labels
labels: List[str] = ['Sublibrary 1', 'Sublibrary 2', 'Sublibrary 3']
zeroing_options: List[str] = ['population', 'counts', 'wt', 'kernel']
title: str = 'Rep-A sublibraries, zeroing_method = '

# xscale
xscales = [(-2, 1), (-2.5, 0.5), (-3.5, 1.5), (-3.5, 1.5)]
# declare dictionary
enrichment_lib = {}
df_lib = {}

for option, xscale in zip(zeroing_options, xscales):
    for pre_key, sel_key, label in zip(list(dict_pre.keys())[::3],
                                       list(dict_sel.keys())[::3], labels):
        aminoacids: List[str] = list('AACDEFGGHIKLLLMNPPQRRRSSSTTVVWY*')

        # log 10
        enrichment_lib[label]  = DataFrame(calculate_enrichment(
            aminoacids,
            dict_pre[pre_key],
            dict_sel[sel_key],
            dict_pre_wt[pre_key],
            dict_sel_wt[sel_key],
            zeroing_method=option,
            zeroing_metric ='mode',
            stopcodon=True,
            infinite=2
        ))

    # Concatenate sublibraries and store in dict
    df_lib[option] = pd.concat([
        enrichment_lib['Sublibrary 1'], enrichment_lib['Sublibrary 2'],
        enrichment_lib['Sublibrary 3']
    ],ignore_index=True, axis=1)


    # Plot
    aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

    hras_sublibrary1: Screen = Screen(
        enrichment_lib['Sublibrary 1'], hras_sequence, aminoacids, start_position, fillna,
    )
    hras_sublibrary2: Screen = Screen(
        enrichment_lib['Sublibrary 2'], hras_sequence, aminoacids, start_position, fillna,
    )
    hras_sublibrary3: Screen = Screen(
        enrichment_lib['Sublibrary 3'], hras_sequence, aminoacids, start_position, fillna,
    )
    hras_sublibrary1.multiple_kernel([hras_sublibrary2, hras_sublibrary3], label_kernels = labels, title=title + option, xscale=xscale)





[image: _images/hras_repA_zeroingpopulation.png]
[image: _images/hras_repA_zeroingcounts.png]
[image: _images/hras_repA_zeroingwt.png]
[image: _images/hras_repA_zeroingkernel.png]


Heatmaps


	Function and class used in this section:

	
	mutagenesis_visualization.Screen


	mutagenesis_visualization.main.heatmaps.heatmap.Heatmap()








We are going to evaluate how does the heatmap of produced by each of the
normalization methods. We are not going to scale the data, so some
heatmaps may look more washed out than others. That is not an issue
since can easily be changed by using std_scale.

# First we need to create the objects

# Define protein sequence
hras_sequence: str = 'MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEY'\
                + 'SAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAARTVES'\
                + 'RQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQHKLRKLNPPDESGPG'

# Order of amino acid substitutions in the hras_enrichment dataset
aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

# First residue of the hras_enrichment dataset. Because 1-Met was not mutated, the dataset starts at residue 2
start_position: int = 2

# Create objects
objects: Dict[str, Screen] = {}
for key, value in df_lib.items():
    temp = Screen(value, hras_sequence, aminoacids, start_position)
    objects[key] = temp





Now that the objects are created and stored in a dictionary, we will use
the method object.heatmap. You will note that the first heatmap
(“population”) looks a bit washed out. If you look at the kernel
distribution, the spread is smaller. The “kernel” and “wt” heatmaps look
almost identical, while the “counts” heatmap looks all blue. This is
caused by the algorithm not being able to center the data properly, and
everything seems to be loss of function. That is why it is important to
select the method of normalization that works with your data.

titles: List[str] = ['population', 'counts', 'wt', 'kernel']

# Create objects
for obj, title in zip(objects.values(), titles):
    obj.heatmap(title='Normalization by ' + title + ' method')





[image: _images/hras_heatmap_norm_population.png]
[image: _images/hras_heatmap_norm_counts.png]
[image: _images/hras_heatmap_norm_wt.png]
[image: _images/hras_heatmap_norm_kernel.png]




          

      

      

    

  

    
      
          
            
  
Creating heatmaps

This section shows how to use the mutagenesis_visualization package. The plotting functions can be used regardless of how you process your data. For the examples, we are using two datasets that are derived from Pradeep’s legacy. 1


Import modules

# running locally, if you pip install then you just have to import the module
%matplotlib inline
from typing import List
import numpy as np
import matplotlib as plt
import copy
from mutagenesis_visualization import Screen
from mutagenesis_visualization.main.utils.data_paths import HRAS_RBD_COUNTS_CSV, HRAS_GAPGEF_COUNTS_CSV







Create object of class Screen


	Class reviewed in this section:

	
	mutagenesis_visualization.main.classes.screen.Screen








In order to create plots, the first step is to create a
Screen.object. The enrichment scores will be passed using the
parameter dataset . The protein sequence sequence and the amino
acid substitutions order aminoacids need to be defined for the
object to be created. Adding the secondary structure secondary is
optional, but without it some plots will not work. In this example, we
are importing two datasets and creating two objects named
hras_GAPGEF and hras_RBD.

# Load enrichment scores. This is how you would load them from a local file.
hras_enrichment_GAPGEF = np.genfromtxt(HRAS_GAPGEF_COUNTS_CSV, delimiter=',')
hras_enrichment_RBD = np.genfromtxt(HRAS_RBD_COUNTS_CSV, delimiter=',')

# Define protein sequence
hras_sequence: str = 'MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGQEEY'\
                + 'SAMRDQYMRTGEGFLCVFAINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAARTVES'\
                + 'RQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQHKLRKLNPPDESGPG'

# Order of amino acid substitutions in the hras_enrichment dataset
aminoacids: List[str] = list('ACDEFGHIKLMNPQRSTVWY*')

# First residue of the hras_enrichment dataset. Because 1-Met was not mutated, the dataset starts at residue 2
start_position: int = 2

# Define secondary structure
secondary = [['L0'], ['β1'] * (9 - 1), ['L1'] * (15 - 9), ['α1'] * (25 - 15),
             ['L2'] * (36 - 25), ['β2'] * (46 - 36), ['L3'] * (48 - 46),
             ['β3'] * (58 - 48), ['L4'] * (64 - 58), ['α2'] * (74 - 64),
             ['L5'] * (76 - 74), ['β4'] * (83 - 76), ['L6'] * (86 - 83),
             ['α3'] * (103 - 86), ['L7'] * (110 - 103), ['β5'] * (116 - 110),
             ['L8'] * (126 - 116), ['α4'] * (137 - 126), ['L9'] * (140 - 137),
             ['β6'] * (143 - 140), ['L10'] * (151 - 143), ['α5'] * (172 - 151),
             ['L11'] * (190 - 172)]

# Substitute Nan values with 0
fillna: int = 0

# Create objects
hras_GAPGEF: Screen = Screen(
    hras_enrichment_GAPGEF, hras_sequence, aminoacids, start_position, fillna,
    secondary
)
hras_RBD: Screen = Screen(
    hras_enrichment_RBD, hras_sequence, aminoacids, start_position, fillna,
    secondary
)







Heatmaps


	Methods reviewed in this section:

	
	mutagenesis_visualization.main.heatmaps.heatmap.Heatmap()


	mutagenesis_visualization.main.heatmaps.heatmap_rows.HeatmapRows()


	mutagenesis_visualization.main.heatmaps.heatmap.columns.HeatmapColumns()


	mutagenesis_visualization.main.heatmaps.miniheatmap.Miniheatmap()








Once the object hras_RBD is created, we will plot a heatmap of the
enrichment scores using the method object.heatmap.

# Create full heatmap
hras_RBD.heatmap(title='H-Ras 2-166', show_cartoon=True)





[image: _images/hras_fullheatmap.png]
If you set the parameter hierarchical=True, it will sort the columns
using hierarchical clustering

hras_RBD.heatmap(title='H-Ras 2-166', hierarchical=True, output_file=None)





[image: _images/hras_fullheatmap_hierarchical.png]
You can change the scale and the color map using the parameters
colorbar_scale and colormap. You can also mask
self-substitutions (ie T2T) by setting mask_selfsubstitutions=True.
The noise in the assay may cause self-substitutions to have a score
different than 0, which may confuse the reader. If you use this masking,
please make sure that there is no systematic error related to the
centering of the data.

# Load a color map from matplotlib
colormap = copy.copy((plt.cm.get_cmap('PuOr')))

# Change scale and colormap
hras_RBD.heatmap(
    mask_selfsubstitutions=True,
    title='H-Ras 2-166',
    colorbar_scale=(-2, 2),
    colormap=colormap,
    show_cartoon=True,
)





[image: _images/hras_fullheatmap_colormap.png]
If you set the parameter show_snv=True, the algorithm will color
green every mutation that is not a single nucleotide variant (SNV) of
the wild-type protein. You will notice how many mutations are not
accessible through a nucleotide change. This option may be useful to you
so you can quickly evaluate which mutations are accessible through
random DNA mutations. In the example of Ras, the frequency of non-SNV
substitutions at residues 12 and 13 is dramatically lower.

# Create full heatmap showing only SNV mutants
hras_RBD.heatmap(
    title='H-Ras 2-166', show_cartoon=True, show_snv=True)





[image: _images/hras_fullheatmap_snv.png]
We can slice the full heatmap by either showing only some columns or
some rows. To show only a few amino acid mutational profiles (rows), we
will use the method object.heatmap_rows. Note that we need to
specify which amino acids to show with selection.



Heatmap slices

# Create heatmap of selected aminoacid substitutions
hras_RBD.heatmap_rows(
    title='H-Ras 2-166',
    selection=['E', 'Q', 'A', 'P', 'V', 'Y'],
)





[image: _images/hras_selectionheatmap.png]
If we want to display only a few positions in the protein (columns), we
will use the method object.heatmap_columns. The parameter
segment will indicate which are the contigous columns to show.

# Create a heatmap of a subset region in the protein
hras_RBD.heatmap_columns(segment=[20, 40])





[image: _images/hras_subsetheatmap.png]


Miniheamap

A summarized heatmap can also be generated. It is useful to evaluate
global trends in the data. The command to use is object.miniheatmap.

# Condensed heatmap
hras_RBD.miniheatmap(title='Wt residue H-Ras')





[image: _images/hras_miniheatmap.png]
Now lets look at the effect of having a certain residue in front the
mutated residue. For instance, the column of prolines is the average of
all the columns that had a proline in the n-1 position. To accomplish
this, set offset=-1.

# Condensed heatmap offset no background correction
hras_RBD.miniheatmap(
    title='Wt residue H-Ras',
    offset=-1,
    background_correction=False,
)





[image: _images/hras_miniheatmap_offset.png]
Now lets do a background correction by setting
background_correction=True. To the calculated values, it will
subtract the mean enrichment score for every substitution type. In the
example, proline is the only residues than wen situated before the
mutation, it seems to have a detrimental effect.

# Condensed heatmap offset with background correction
hras_RBD.miniheatmap(
    title='Wt residue H-Ras',
    offset=-1,
    background_correction=True,
)





[image: _images/hras_miniheatmap_offset_bgcorrection.png]
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Creating plots

This section continues showing how to do different types of plots.


Import modules

# running locally, if you pip install then you just have to import the module
%matplotlib inline
from pandas.core.frame import DataFrame
import numpy as np
import pandas as pd
from mutagenesis_visualization.main.demo.demo_objects import DemoObjects
DEMO_OBJECTS:DemoObjects = DemoObjects()
hras_rbd = DEMO_OBJECTS.hras_rbd
hras_gapgef = DEMO_OBJECTS.hras_gapgef







Histogram, scatter and more


	Classes reviewed in this section:

	
	mutagenesis_visualization.main.kernel.kernel.Kernel


	mutagenesis_visualization.main.kernel.histogram.Histogram


	mutagenesis_visualization.main.kernel.sequence_differences.SequenceDifferences


	mutagenesis_visualization.main.scatter.scatter.Scatter


	mutagenesis_visualization.main.other_stats.rank.Rank


	mutagenesis_visualization.main.other_stats.cumulative.Cumulative








There are different tools to analyze the data. The package can plot the
kernel density estimation (object.kernel). There is the option to
fit other functions to the data (see Implementation for more). You could
also only plot a histogram (object.histogram). For the histograms,
we can select to plot only the single nucleotide variants (SNVs) or the
non-SNVs. In the example, it actually changes the shape of the
population. Non-SNVs are more sensitive to mutations than SNVs because
there is a higher proportion of non-conservative amino acid
replacements.

# Plot kernel dist using sns.distplot.
hras_rbd.kernel(
    title='H-Ras 2-166', xscale=[-2, 1]
)

# Plot histogram of SNVs
hras_rbd.histogram(
    population='SNV', title='H-Ras 2-166 SNV', xscale=[-2, 1]
)

# Plot histogram of non-SNVs
hras_rbd.histogram(
    population='nonSNV',
    title='H-Ras 2-166 non-SNV',
    xscale=[-2, 1],
)





[image: _images/hras_kde.png]
[image: _images/hras_histsnv.png]
[image: _images/hras_histnonsnv.png]
If you have multiple datasets and want to compare them, you can do it
with the method object.scatter. We give the option to do the
comparison at a mutation by mutation level mode=pointmutant, or at a
position level mode=mean.

# Plot a scatter plot of each mutation
hras_rbd.scatter(
    hras_gapgef,
    title='Individual mutations',
    mode='pointmutant',
    xscale=(-2.5, 1.5),
    yscale=(-2.5, 1.5),
    x_label='H-Ras Unregulated',
    y_label='H-Ras Regulated',
)

# Plot a scatter plot of the mean position
hras_rbd.scatter(
    hras_gapgef,
    title='Positional average',
    mode='mean',
    xscale=(-2, 1),
    yscale=(-2, 1),
    x_label='H-Ras Unregulated',
    y_label='H-Ras Regulated',
)





[image: _images/hras_scatter.png]
[image: _images/hras_scatter_mean.png]
If you are comparing two homologs/paralogs, you can evaluate what
happens when mutating every site that differs between the two proteins
to the identity in the other second protein. (ie K4A and A4K)

# here map the residues that are different between the two proteins
map_sequence_changes = [(1, 1), (5, 5), (56, 56), (122, 123)]
                        #^ same residue             #^ the residue 122 of the first protein matches the 123 rd of the second protein
# ancestralras_rbd does not exist yet, so this cell wont run
hras_rbd.sequence_differences(ancestralras_rbd, map_sequence_changes)





[image: _images/hras_histogram_A_to_B.png]
The method object.rank sorts each mutation (or position) by its
enrichment score.

hras_rbd.rank(mode='pointmutant', outdf=True, title='Rank of mutations')





[image: _images/hras_rank.png]
[image: _images/hras_ranktable.png]
The method object.cumulative draws a cumulative plot that sums the
mean enrichment score of every position. This plot is useful to
determine if the sensitivity to mutations is constant throughout the
protein or not. In the example, we see that the cumulative function
follows the x=y line, suggestion a homogeneous mutational tolerance.

# Cumulative plot
hras_rbd.cumulative(mode='all', title='Cumulative Score')





[image: _images/hras_cumulative.png]


Bar and line charts


	Classes reviewed in this section:

	
	mutagenesis_visualization.main.bar_graphs.enrichment_bar.EnrichmentBar


	mutagenesis_visualization.main.bar_graphs.differential.Differential


	mutagenesis_visualization.main.bar_graphs.position_bar.PositionBar


	mutagenesis_visualization.main.bar_graphs.secondary.Secondary








The method object.enrichment_bar will plot the mean enrichment score
for every position on a bar chart. It will be colored blue for loss of
function and red for gain of function. Additionally, setting the
parameter mode to an amino acid (using the one letter code) will
plot the enrichment for that particular amino acid along the protein. In
this example, we are showing the mean enrichment scores (top) and an
alanine scan (bottom)

# Plot a bar graph with the mean enrichment score
hras_rbd.enrichment_bar(
    figsize=[6, 2.5],
    mode='mean',
    show_cartoon=True,
    yscale=[-2, 0.5],
    title='',
)

# Plot a bar graph with the alanine enrichment score
hras_rbd.enrichment_bar(
    figsize=[6, 2.5],
    mode='A',
    show_cartoon=True,
    yscale=[-2, 0.5],
    title='',
)





[image: _images/hras_bar_mean.png]
[image: _images/hras_bar_alanine.png]
The mean differential effect between the two example datasets is
displayed using the method object.differential. This plot is useful
to compare either orthologs/paralogs or the same protein with different
effectors, and determine which areas of the protein have a different
sensitivity to mutations.

# Plot the difference between H-Ras unregulated and H-Ras regulated datasets
# The subtraction is hras_RBD - hrasGAPGEF
hras_rbd.differential(
    hras_gapgef,
    figsize=[6, 2.5],
    show_cartoon=True,
    yscale=[-1, 1],
    title='',
)





[image: _images/hras_diffenrichment.png]
You can check the individual mutational profile of a residue by using
object.position_bar.

# Create plot for position 117
hras_rbd.position_bar(
    position=117,
    yscale=(-1.5, 0.8),
    figsize=(3.5, 2),
    title='Position 117',
)





[image: _images/hras_position117.png]
If you added the secondary structure as an attribute of the object, you
can plot the mean enrichment score for each alpha and beta motif in the
protein (object.secondary_mean).

# Graph bar of the mean of each secondary motif
hras_rbd.secondary_mean(
    yscale=[-1, 0],
    figsize=[3, 2],
    title='Mean of secondary motifs',
    output_file=None
)





[image: _images/hras_secondary.png]


Correlation, PCA and ROC AUC


	Classes reviewed in this section:

	
	mutagenesis_visualization.main.pca_analysis.correlation.Correlation


	mutagenesis_visualization.main.pca_analysis.individual_correlation.IndividualCorrelation


	mutagenesis_visualization.main.pca_analysis.pca.PCA


	mutagenesis_visualization.main.other_stats.roc_analysis.ROC








If you want to know more about PCA and ROC, watch the following StatQuest videos on youtube:
PCA [https://www.youtube.com/watch?v=FgakZw6K1QQ&ab_channel=StatQuestwithJoshStarmer]
ROC and AUC [https://www.youtube.com/watch?v=4jRBRDbJemM&ab_channel=StatQuestwithJoshStarmer]

The correlation of amino acid substitution profiles can be calculated
for each amino acid and graphed using object.correlation. In the
example we observe that polar amino acids have high correlation between
themselves but low correlation with hydrophobic amino acids.

# Correlation between amino acids
hras_rbd.correlation(
    colorbar_scale=[0.5, 1], title='Correlation'
)





[image: _images/hras_correlation.png]
The method object.individual_correlation will tell you how a single
amino acid substitution profile (row of the heatmap) correlates to the
rest of the dataset.

# Explained variability by amino acid
hras_rbd.individual_correlation(
    yscale=[0, 0.6],
    title='Explained variability by amino acid',
    output_file=None
)





[image: _images/hras_variability.png]
The package can perform principal component analysis (PCA) using the
method object.pca. The parameter mode can be set to
aminoacid, in which will cluster amino acids based on their
similarity, individual in which will do the same for each individual
residue and secondary, in which will cluster for each motif. By
default, the first two dimensions will be plotted (0 and 1 in Python
notation), but that can be changed by dimensions parameter.

# PCA by amino acid substitution
hras_rbd.pca(
    title='',
    dimensions=[0, 1],
    figsize=(2, 2),
    adjustlabels=True,
    output_file=None
)

# PCA by secondary structure motif
hras_rbd.pca(
    title='',
    mode='secondary',
    dimensions=[0, 1],
    figsize=(2, 2),
    adjustlabels=True,
    output_file=None
)

# PCA by each individual residue. Don't set adjustlabels = True unless really big figsize
hras_rbd.pca(
    title='',
    mode='individual',
    dimensions=[0, 1],
    figsize=(5, 5),
    adjustlabels=False,
    output_file=None
)





[image: _images/hras_pcaaminoacid.png]
[image: _images/hras_pcasecondary.png]
[image: _images/hras_pcaindividual.png]
Another type of plot that can be done is a receiver operating
characteristic (ROC) curve for classification. You will use the method
object.roc and as an input you will pass a dataframe that contains
the label for each variant.

#  Fake data
df_freq: DataFrame = DataFrame()
df_freq['Variant'] = hras_rbd.dataframes.df_notstopcodons[-1]['Variant']
df_freq['Class'] = np.random.randint(2, size=len(df_freq))

# Plot ROC curve
hras_rbd.roc(
    df_freq[['Variant', 'Class']],
    title='ROC example',
)





[image: _images/hras_roc.png]


Pymol


	Class reviewed in this section:

	
	mutagenesis_visualization.main.pymol.pymol.Pymol








The data can be visualized on a Pymol object using object.pymol. It
is important that not only Pymol is installed, but also on the same path
as Python. You may have to manually install the ipymol API. See the
Getting Started chapter for more information.

The parameter pdb will fetch the pdb that you want to use. Note that
the protein chain needs to be specified (see example). Red for gain of
function and blue for loss of function. mode lets you specifiy
whether to plot the mean or an individual amino acid profile (left -
Leucine, right - Aspartate).

# Start pymol and color residues. Cut offs are set with gof and lof parameters.
hras_rbd.pymol(pdb='5p21_A', mode='mean', gof=0.2, lof=-0.5)

# Now check the mutational profile of Leuc